Hatch Systems and Process Control

Energy Monitoring in an Underground Mine

Josh Lilley, MBA, P.Eng PowerLogic ION Users Conference 2010 October 22, 2010

Introduction

Josh Lilley

- Senior Electrical Engineer with Hatch Sudbury (8+yrs)
- Sudbury Systems & Process Control Discipline Lead
- Involved with Nickel Rim South Project for past 6 years

Presentation Overview

- Introduction
- About Hatch
- Hatch Systems & Process Control
- Nickel Rim South Project
- Conclusion
- Questions

About Hatch

- Global company, headquartered in Canada
- Awarded one of Canada's 50 best managed private companies in 2007, 2008, 2009
- Employee owned
- Projects in more than 150 countries
- 8000 professionals worldwide
- US\$40 billion of projects under management
- EPCM, Integrated Teams, Project and Construction Management
- Consulting process, systems and process control, technology and business
- Engineering services for operations support
- Serving mining & metals, energy and infrastructure for more than 50 years

Working**Together** SAFELY

Hatch Services & Sectors

Our Business Units

Global Operations

8000 staff – July 2010

About Hatch Systems & Process Control

- 450 professionals world wide
- Roots in mining, metallurgical and energy engineering
- Thorough understanding of Process Control, PIMS/MES and IT/Systems domains
- Use of sound engineering principles/ international standards
- Can draw on experience from around the world and across different industries
- Proven track record
- We believe in getting it right the first time

S&PC Scope - Purdue Model

Nickel Rim South Project

- Client: Xstrata Nickel
- Facility: Nickel & Copper Mine
- Start Date: March 8, 2004
- Completion: April 1, 2010
- Capital Cost: approx. \$920M

Nickel Rim South Project

- Two Shafts Sunk 50m apart
- Main Shaft Sunk to depth of 1735m
- Vent Shaft Sunk to depth of 1685 m
- Lateral Development: 21.6 km

Nickel Rim South Power System

- 115kV power line to site
- Two 15/20/25 MVA Transformers step down voltage from 115kV to 13.8kV
- Site distribution is at 13.8kV & 600V
- One 2 MW diesel generator used for emergency backup

Nickel Rim South Project

Overall Site - 2004

Overall Site - 2010

Scope & Design Basis

Project mandate was to establish the provisions to monitor all permanent infrastructure to enable collection of base line measurements for future energy "management"

- Allow users to make economic decisions in a real time environment;
- Monitor Mine Commodities;
 - Electricity
 - Water process & potable
 - Diesel Fuel
 - Natural Gas

Why ION Enterprise?

- Proven success within the Sudbury Business Unit
- Maintain standardization of energy management product deployments within Sudbury
- Capable of being integrated with a deregulated market

System Statistics

<u>Device</u>	Function	<u>Quantity</u> 108	
ION 7350	600V Bus Monitoring/Nat. Gas		
ION 8500	Revenue Meters	4	
ION 6200	2MW Generator	3	

 \mathbf{n}

System Statistics

<u>Device</u>	<u>Function</u>	<u>Quantity</u>
T60 UR Relay	Main 115/13.8kV Tx Protection	2
PQMII AM0D50	13.8/0.6kV Substation	2
Startco SE-330 Ground Fault Relay	600V Ground Fault Monitoring	28
F35 UR Relay	13.8kV Breaker Protection	12

Surface Single Line

System Architecture

System Architecture – Field Devices

System Architecture

Working**Together**

13.8kV Distribution Summary

Energy Management System Nickel Rim South Mine GE Multilin F35-1 Protection Relay Detailed Meter Data - PAGE 1

Site Overview Navigation Screen

Source 1: T1 PRI Current	Source 4 : 52A1 Current	Lhe	Power	Real	Reactive	Apparent	Ellergy
la :536A	la : 13.6A	Vab:1391#/	PF piA :-99.4%	KW pliA : 108kW	kuar pilA :- 13 kuar	KVA pliA : 109KVA	NUUN Pos : 2118.527 NUUN
1b : 49.8A	1b : 1328	V bc : 13 7 36/	PF p 18 : -99 %	KW ph 8 : 1 02kW	kuarpile:-15 kuar	KVA plil : 1 DSKVA	MWN Neg : 0.23MWN
10 (SD.3A	10 : 13.7 A	V ca : 13 831V	PF pliC :-98.7%	KNDIC: 105KN	kuarpliC: -18 kuar	KVA piC:107KVA	Muark Pols : 739.284 Muark
Igrouid: DA	Iground :0.1 A	Plase	PF 10t :-99%	MAN 101: 3 16 MAN	kuar tot:-46 kuar	KVA 101 : 3 24KVA	Muari Neg : 313.943 Muari
Frequency	Frequency	V ag :8034V					
Freq::60 Hz	Freq.:68 Hz	V bg :7976V					
1		V og :7944V					
Source 2:52T1	Source 5:52A2	S Martin					
Current	Current	Lite	Power	Real	Reactive	Apparent	Evergy
1a: 458.8A	1a : 2.4A	V ab : 13 913/	PF p&A :-58.4%	KW PEA : DKW	kuarpiA: 4 kuar	KVA pliA : 6 KVA	MUUL Pos :2240.739 MUUL
1b: 452.9A	lb :228	V be : 13 737V	PF p18 :-842%	KN/p18:-9KN	kuarpii8:4kuar	KVA pil8 : 9KVA	MUUh Neg:1324721 MUUh
1c: 425.3%	Ic :258	Vica : 13 837V	PF piC : 40.7%	KNOPIC : -6KN	kuarpiC:-2 kua r	KVA piC: 6 KVA	Mulark Pos : 335,83 Muair
Igroud: DA	Iground :02 A	Pliase	P :-94.6%	KAU 101:0 KAU	kuar tot: 2kuar	KVA tot: 12KVA	y Muari Neg 19 <i>.</i> 625 Muari
Idonad: D.a	Frequency	V ag : 8032V					
Igiored. UN	Freq.:60 Hz	V bg : 7975V					
·····		V og : 7945V					
Source 3: Bus A	Source 6 : 52A3						1.111
Voltage	Current	Line	Power	Real	Reactive	Apparent	Elergy
Vab:13.914/	la:18A	Vab: 13 910/	PF pilA :- 75.6%	KOV PKA : 109KOV	kuar pliA :-95 kuar	KVA pliA : 1 45KVA	MUUN Pos : 14438.935 MUUN
V bc : 13 737V	Ib : 17.3A	Vbc:13744/	PF p18 :-75.3%	KOV PHB : 104KOV	kuar pi 8 : -93 kuar	KVA pil8 : 1 39KVA	1000 Neg : 2.3950000
V ca : 13 836/	IC : 17.6A	Vica : 13 850/	PEpiC: -74%	KODIC: 104KO	kuarpliC: -95 kuar	KVA pIC: 141KVA	Muairk Pos : 3777.549 Muark
V ag :8037V	Iground :0.1 A	Phase	PF 101:-74.9%	KIN 101:3 16KIN	kua ribt:-282ku ar	KVA 101 : 4 25KVA	Mua ni Neg:6 724.196 Muari
V bg :7976V	Frequency	V ag : 80 32V			No della companya	X	
V cg : 7941V	Freq.:60 Hz	V bg : 79 76V					
Frequency	Sectors Strength	V og : 79 48V					
Freq :60 Hz							

UR Relay Diagnostic Screen

600V Distribution Single Line

Underground Navigation Screen

1280L Single Line Overview

Working**Together** SAFELY

1480L Single Line Overview

RSView HMI Single Line

1280-034-ESS / PSS-03 (ACC01)

RSView HMI Single Line

Conclusion

- ION Enterprise integrates well with standard Power Measurement ION meters, limited functionality with third party meters;
- Powerful tool for reporting and troubleshooting;
- Future software revisions should allow for same functionality when integrating 3rd party meters as available with ION meters.

Questions?

